
Abstract. The introduction of extremely localised mo-
lecular orbitals, a current issue in modern physical
chemistry, justi®es chemical intuition and provides a
useful tool towards the description of large molecules. In
this paper, a possible strategy to determine these orbitals
is proposed. The algorithm implemented has been tested
by e�ecting computations on water, ammonia, benzene
and naphthalene by employing di�erent intramolecular
partitionings. Ethane and biphenyl have been considered
for application of the algorithm to the study of
rotational barriers. Our scheme also includes the possi-
bility to compute derivatives with respect to nuclear
coordinates.
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1 Introduction

The description of the electronic structure of large
molecules remains one of the most appealing targets of
computational chemistry. The theory of molecular
orbitals (MOs) contributed signi®cantly to the achieve-
ment this aim, but introduced the idea of delocalised
orbitals, which does not support the intuitive concepts of
chemistry.

MO theory can be considered the natural evolution of
the electronic structure of polyelectronic atoms. The
electronic structure of a molecule is obtained by ®lling,
according to the aufbau principle, the various MOs
pertinent to the nuclei which compose the system. This
delocalised-orbital-based construction is in contrast with
the more chemically intuitive idea of a molecule as a
collection of functional groups, upon which the concepts
of chemical reactivity, molecular conformation analysis
and functional group interaction are based.

The introduction of local concepts allows other ex-
tremely interesting applications. For example, the study
of the receptor site of a protein naturally requires the
treatment of a restricted molecular portion as part of a
more extended region whose detailed knowledge, though
not negligible, is not essential.

Moreover, local concepts call for the possibility to
transfer the information obtained for small fragments to
larger molecules, and may therefore be the ideal starting
point for fundamental computational developments in
applied quantum chemistry.

These factors account for the great number of pub-
lications regarding the extension of local concepts to
MO theory, for example, the various well-known loca-
lisation schemes for MOs and the diverse approaches to
the determination of the wavefunction of a restricted
molecular region [1, 2].

Recently Rubio et al. [3] have demonstrated that it is
possible to apply an iterative scheme based directly on
localised MOs, instead of localising orbitals previously
determined on the whole structure. This approach was
proposed as a method to determine self-consistent-®eld
(SCF) wavefunctions of large molecules by employing
MOs built on smaller fragments, and it constitutes a
valid alternative for the investigation of periodical
systems. Related work on this approach is also due to
Sano and Matsuoka [4].

It is to be noted, however, that the use of orbitals
obtained by a localisation procedure is always accom-
panied by the presence of tails on the regions sur-
rounding the localisation area; these tails are essential to
guarantee the orthogonality of MOs. A complete loca-
lisation is therefore associated with nonorthogonality
[5±7]. It should be underlined that the presence of
tails prevents the transferability of the relative orbitals.

Combined quantum mechanics/molecular mechanics
(QM/MM) methods [8, 9], which are becoming very
popular for the modelling of large molecular systems, can
take advantage of extremely localised MO techniques. In
fact, QM/MM approaches, in which a subsystem is
treated quantum mechanically while its surroundings are
described by classical molecular mechanics, can easily
deal with solvent-e�ect investigations [10, 11] because of
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the natural discontinuity between the solute and the
solvent molecules. Nevertheless, when the quantum de-
scription is limited to a small fragment of a larger mol-
ecule, an arti®cial discontinuity is introduced between the
quantum and the classical part of the system. In these
cases, localised MOs can play the role of a bu�er between
the two parts. Furthermore, it is to be noted that such
orbitals strictly depend on all atomic orbitals of the
system, since there are no special reasons, excluding
computational or chemical motives, to limit this zone to a
bond. Therefore, as pointed by Assfeld and Rivail [12], a
su�ciently realistic expression should be adopted, even if
the simple exclusion of the other basis functions centred
on external atoms has also been employed.

In this paper we describe a possible approach to the
determination of MOs strictly localised in de®ned mo-
lecular regions. The total system containing Nf arbitrary
molecular fragments can be described by a wavefunction
of the form

W �
YNf

k�1

YNk

j�1
u k� �

j u k� �
j

�����
����� ;

where each fragment consists of Nk appropriate doubly
occupied MOs expanded in a subset of the total atomic
functions (the subset which determines the molecular
fragment). These orbitals, therefore, are nonorthogonal
and are extremely localised.

This type of localisation was originally proposed by
Stoll et al. [5] and more recently by Couty et al. [6], who
determined the orbitals appearing in Eq. (1) maintaining
their non-orthogonality and hence employing Lowdin's
formulae for the computation of the matrix elements.
The proposed formulation adopts a second-order
approach by determining approximate diagonal blocks
of the inverse Hessian matrix, while the other blocks
are calculated through Davidon±Fletcher±Powell or
Broyden±Fletcher±Goldfarb±Shanno methods [13].

In this work we propose a di�erent approach, which,
though maintaining the rigorous extremely localised
nature of the MOs, does not require the use of the
Lowdin's formulae. This approach is developed in the
framework of the SCF theory, thus allowing the calcu-
lation of wavefunction energy derivatives with respect to
nuclear coordinates by standard algorithms [14].

It is well known that double occupation allows a
considerable freedom in the choice of the orbitals: the
SCF wavefunction is invariant upon linear transforma-
tion of the constituent MOs. This freedom can be used
to transform a group of nonorthogonal MOs u k� ��� �

,
whose expectation value of the energy can be determined
by Lowdin formulae, into a set of orthogonal orbitals
with the same energy value, obtained through applica-
tion of Slater's rules.

This problem is solved through a direct extension of
the SCF-MI (SCF for Molecular Interactions) wave-
function [15], recently introduced for the calculation of
intermolecular forces in the absence of basis set super-
position error (BSSE). In the SCF-MI wavefunction, the
MOs of each interacting molecule are expanded em-
ploying only their own atomic functions, thus realising a
BSSE-free wavefunction. While fragments approach, the

MOs tend to superimpose on each other, losing their
orthonormality. Gianinetti and coworkers [15] and
Famulari [16] have demonstrated that the determination
of MOs in this case is reducible to the solution of an
eigenvalue±eigenvector problem for each molecular
fragment.

This paper demonstrates that the equations proposed
can easily be generalised to include the case of overlap-
ping molecular fragments. It is therefore possible, for
example, to describe a chain of atoms 1-2-,...,-N by de-
®ning a ®rst fragment containing the ®rst and second
atom, a second fragment constituted by the atomic
functions of the second and third atoms and so on, so
that all fragments share part of the basis functions
(contrary to the SCF-MI formulation). The algorithm
presented in this paper has been inserted into GAMESS-
US [17] together with the calculation of analytical de-
rivatives with respect to the nuclear coordinates, and,
therefore, allows the determination of the molecular
geometry through a localised wavefunction. Moreover,
the numerical determination of the second derivatives
and of vibrational frequencies is possible.

This strategy has been applied to water and ammonia
molecules, including full geometry optimisation. Prelimi-
nary calculations have been accomplished on benzene and
naphthalene by employing diverse localisation schemes,
and MOs localised over two or more centres to describe
CAC and CAH bonds and over one centre to describe
carbon atom cores. Ethane and biphenyl molecular sys-
tems have also been treated with the aim to analyse delo-
calisation contributions to rotational barriers. The results
are interesting, and we believe that the algorithm can be
employed in future to treat systems of larger dimensions.

2 Theory

Consider a system of Nf molecular fragments. The
kth fragment is de®ned by Mk atomic functions

fv�k�i gMk
i�1 � jv�k�i and Nk doubly occupied MOs,

fu�k�i gMk
i�1 � ju�k�i. By employing the orbitals ju�k�i the

following Slater determinant can be de®ned:

W �
YNf

k�1

YNk

j�1
u k� �

j u k� �
j

�����
����� : �1�

The orbitals u k� ��� �
can be obtained through a generali-

sation of the recent equations proposed by Gianinetti
and coworkers [15] and Famulari [16] developed in the
framework of the SCF-MI wavefunction, devised to
exclude BSSE in the study of molecular interactions.

A brief review of the SCF-MI equations is reported
here, in order to understand the present generalisation.
The SCF-MI wavefunction has the same structure as
Eq. (1), where the orbitals of the kth fragment are
described by a linear combination of atomic functions
centred only on the atoms of the fragment itself:

u k� �
i �

XMk

j

Tk� �jiv
k� �

j :

The di�erent monomers do not share any atomic
function, thus avoiding the BSSE.
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In order to determine the coe�cient matrices Tk, the
following Nf eigenvalue±eigenvector equations must be
solved iteratively:

F0kTk � S0kTkEk : �2�
The matrices F0k and S0k, each of dimension Mk �Mk are
de®ned by the following equations:

F0k � �1M ÿ �~T~V~Ty�S� ~Q�yF�1M ÿ �~T~V~Ty�S� ~Q
h i

kk

S0k � Sÿ S~T~V~TyS� S ~Q
� �

kk ; �3�
where F and S are the Fock matrix and the overlap
matrix between atomic functions, respectively, both of
dimension M �M , where M is the total number of basis
functions (which is equal to

PNf

k Mk in the present
discussion).

The M � N matrix ~T (where N �PNf

k Nk) can be
considered as a block diagonal supermatrix, de®ned as

~T
� �

hk� dhkTk h; k � 1; K Nf ;

where the �h; k� block is of dimension Mh � Nk. The other
matrices in Eq. (3) have a similar block diagonal structure:

~Vhk � ��~TyS~T�ÿ1�hk of dimension Nh � Nk

~Qhk � �~T~V�hk �~V~TyS�kk of dimension Mh �Mk :

In the present work we are interested in fragments which
can share one or more atoms, i.e. the same atomic
function can belong to more than one group v�k�. If
we denote by Mt the total number of atomic functions
employed, Mt �

PNf

k Mk, then in general Mt � M (where
M is the number of the unique atomic functions).
Equality will be obtained when a basis function belongs
to just one fragment, as seen before for the SCF-MI
wavefunction. Consequently the supermatrix ~T loses its
block diagonal structure. Anyway, it can be shown that
it is still possible to use Eq. (2) or Eq. (3), by substituting
the S and F matrices with two supermatrices, of
dimension Mt �Mt de®ned as:

~Sxy
� � � hv�x�jv�y�i or ~Sxy

� �
ij� hv

�x�
i jv�y�j i

~Fxy
� �

ij� hv
�x�
i

~F
�� ��v�y�j i :

�4�

By employing the above de®nitions, the F0k and S0k
matrices can be expressed as follows:

F0k �
XNf

xy

~Pykx
~Fxy ~Pyk ; �5�

where

~Pxy � 1xxdxy ÿ Tx ~Wxy ÿ ~Vxy ~Wyy
� �

S0k � ~Skk � ~Wykk
~Wkk ÿ

XNf

x

~SkxTx ~Wxk ;

where

~Wxy �
XNf

z

~VxzT
y
z
~Szy and 1xx is the identity matrix of

dimension Mx �Mx:

It should be noted that the determination of the su-
permatrices ~S and ~F does not require any additional
calculation, since they contain the same elements of the
S and F matrices. Actually, these supermatrices have
been introduced only in the formal treatment, since the
algorithm to calculate Eq. (5) makes use of the S and F
matrices. It should be noted, in e�ect, that the intro-
duction of a great number of fragments with diverse
common functions will result in Mt � M .

Due to the presence of the same atomic function in
di�erent fragments, the supermatrix S now becomes
singular. This singularity is also induced in the S0 matrix,
which appears in the eigenvalue±eigenvector equations
(Eq. 2). Anyway, it is possible to overcome this problem
and to solve Eq. (2) by means of the canonical orthog-
onalization method [18].

The convergence properties of the algorithm are still
under study. Convergence is not very fast with a great
number of fragments which strongly interact, as in the
examples reported later. It should be observed that the
dependence of the F0 matrix upon the coe�cients T is
complicated by the transformation (Eq. 5), indicating
that an estimation of the second derivatives could be
useful to realise a robust algorithm, and this will be the
subject of future work.

Anyway, the algorithm implemented so far was able
to converge even when considering an ``extreme'' loca-
lisation scheme as in the naphthalene and biphenyl
examples Sect. 3.

The theory reported is compatible with the usual
formulation of the analytic derivatives of the SCF
energy. This allowed the implementation of gradient
optimisation algorithms and force constant matrix
computations in both the direct and conventional SCF
approaches. The present algorithm has been inserted
into the GAMESS-US package.

3 Computational examples

In this section, some results showing the accuracy and the
potential applications of the method are presented. The
systems considered as examples for gradient optimisation
applications under localisation constraints are water and
ammonia, while benzene and naphthalene have been
investigated with di�erent localisation patterns. Prelim-
inary studies have also been performed for ethane and
biphenyl molecules including rotational barrier analysis
using extremely localised molecular orbital calculations.

A triple-f+polarisation basis set [19] was employed
for water, ammonia, ethane and benzene a 6-31G�� basis
set [20] for naphthalene and a 6-31G basis set [20] for
biphenyl.

The results for water and ammonia are reported in
Table 1. The calculation for the water molecule was
carried out by considering the electrons to be partitioned
in three fragments. The ®rst two are identi®ed by the
oxygen atom and each of the two hydrogen atoms; they
contain two electrons and describe the two OAH bonds.
The third fragment is identi®ed only by the oxygen atom
and it contains six electrons; it describes the core elec-
trons of the oxygen atom and the two lone pairs.
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Similarly, the ammoniamoleculewas describedby four
fragments: three of them describe theNAHbonds and are
identi®ed by the nitrogen atom and one of the three hy-
drogen atoms. The fourth fragment, identi®ed only by the
nitrogen atom contains four electrons and describes the
core electrons of the nitrogen and the lone pair.

The calculation was ®rst carried out at the SCF
optimised geometry, then the geometry was optimised
by maintaining the localised nature of the MOs. As is
evident from Table 1, the optimised geometry in the
framework of the localised MOs does not di�er sub-
stantially from the SCF optimised geometry. These
results indicate that a wavefunction built up using
extremely localised MOs is also a good candidate to
describe geometric properties.

The calculations on the benzene and naphthalene
molecules were carried out to investigate di�erent
localisation schemes for the p system so as to test our
program thoroughly. The geometry optimised at the
SCF level was used.

The r systems were described with a set of fragments,
each constituted by pairs of bonded atoms. A strongly
overlapping pattern of fragments results: with the ex-
ception of the carbon atoms involved in the fusion of the
two rings, each carbon atom belongs to three fragments
(two r CAC bonds and one CAH bond). The same
partitioning of the r system was used with di�erent
descriptions of the p system.

The p electrons of the benzene molecule were de-
scribed using four di�erent localisation schemes (Fig. 1)
consisting, respectively, of three fragments, each con-
taining a couple of adjacent carbon atoms (1) (a KekuleÂ
partition), three fragments containing three adjacent
carbon atoms each (2), three fragments constituted by
four adjacent carbon atoms (3) and a fragment contain-
ing all the carbon atoms (4) (full p-delocalisation model).

The p electrons of the naphthalene molecule were
described using ®ve fragments constituted by the func-

tions of two adjacent carbon atoms (1) (this set contains
the resonance structure which maintains a double bond
at the fusion of the two rings) and a fragment containing
all the carbon atoms (2) (full p-delocalisation model).

The results are reported in Table 2, together with the
value of the norm of the energy gradient with respect to
the variational coe�cients at the end of the calculation.

The rationalisation of steric e�ects represents a very
challenging ®eld for ab initio calculation methods. The
simplest aliphatic chain involving a rotational barrier is
represented by the ethane molecule. Always keeping in
mind the possibility to transfer extremely localised MOs,
we performed preliminary calculations on ethane: the
results are reported in Table 3. Eclipsed and staggered
SCF optimised geometry conformations have been
considered by using a triple-f+polarisation basis set.
Our extremely localised MO calculations were per-
formed with a full localisation scheme by employing
seven two-atom bonds (one CAC bond and six CAH
bonds) and two carbon core fragments. A lowering
of the CAC torsional barrier is observed with respect to
the fully delocalised standard SCF value. Our result
(2.87 kcal/mol), smaller by 22.6%, is in good accordance
with the experimental (2.93 kcal/mol [21]) and theoreti-
cal (see, e.g. Ref. [5]) data. It is to be noted that this
outcome could be fortuitous [5].

The biphenyl molecule represents the prototype for
the study of delocalisation contributions to rotational
barriers in biaryl systems. Great interest has been
devoted to the conformational problems regarding
biphenyl and its derivatives. Experimental studies [22]
reveal a nonplanar equilibrium conformation with a
torsional angle (h) of 44.4� for the biphenyl molecule in
the gaseous state. Two barriers (h � 0� and h � 90�)
characterise the potential function of the CAC rotation.
The planar and orthogonal SCF optimised geometry
conformations have been considered by using the 6-31G
basis set [20]. As in the case of benzene and naphthalene,

Table 1. Results for water and ammonia molecules for self-
consistend-®eld (SCF) and (ELMC) optimised geometries

Water Ammonia

SCF optimised geometry: SCF optimised geometry:
OAH = 0.9407 a.u. NAH = 0.9982 a.u.
HOH angle = 106.98° HOH angle = 108.90°
E(SCF) = )76.056014 a.u. E(SCF) = )56.216625 a.u.
E(ELMO) = )76.045428 a.u. E(ELMO) = )56.208131 a.u.

ELMO optimised geometry: ELMO optimised geometry:
OAH = 0.9448 a.u. NAH = 0.9998 a.u.
HOH = 108.33° HOH = 109.49°
E(ELMO) = )76.045527 a.u. E(ELMO) = )56.208167 a.u.

Fig. 1. Di�erent localisation
schemes for p electrons of ben-
zene (see text)

Table 2. Results for benzene and naphthalene molecules

Localisation pattern
(see text)

Energy
value (a.u.)

Norm of the
gradient

(1) ± Benzene )230.579446 1.48D-05
(2) ± Benzene )230.685634 1.31D-04
(3) ± Benzene )230.717852 2.25D-10
(4) ± Benzene )230.725393 2.15D-11
SCF ± Benzene )230.771570
(1) ± Naphthalene )383.074923 2.20D-08
(2) ± Naphthalene )383.287746 2.78D-05
SCF ± Naphthalene )383.369365
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at the Extremely Localized Molecular Orbitals (ELMO)
level, the r system was described with a set of fragments
constituted by pairs of bonded atoms representing CAC
and CAH bonds and by 12 carbon core fragments. The p
electrons were described using two fragments constituted
by the six carbon atoms of each ring (full internal ring p-
delocalisation model). The results of our calculations are
presented in Table 4 and Fig. 2. The qualitative accor-
dance of ELMO and SCF rotational barriers is satis-
factory when considering that the absolute energies of
the two approaches di�er by more than 50 kcal/mol.

In order to appreciate the extremely localised nature
of the MOs we report in Fig. 2 the superimposed
contour plots of the orbitals corresponding to the r
CAC bond and the CAH bonds for the biphenyl system.

In the case of the planar conformation of biphenyl,
the energy of the MOs obtained by Pipeck and Mezey
[23] with localisation and removal of the tails is 129 kcal/
mol higher than ELMO result. It is to be noted that tail

deletion from localised SCF orbitals has a strong e�ect
on the system energy, and so it becomes of crucial im-
portance to dispose of realistic MOs in order to transfer
local concepts.

It should be pointed out that, as underlined by Couty
et al. [6], delocalisation e�ects can be, in principle, par-
tially included by a Jacoby correction scheme. This
supplementary procedure permits a better reproduction
of Hartree±Fock energies while still maintaining accu-
racy and low computational cost.

4 Conclusions

The use of extremely localised MOs provides a useful
tool to describe large molecules using building blocks
determined on smaller fragments. It must be pointed out

Table 3. Results for the ethane system. The total energy (atomic
units) is reported for staggered and eclipsed conformations.
Standard SCF and ELMO rotational barriers are reported in kilo
calorie/mole

Conformation E/DE ELMO E/DE SCF

Eclipsed )79.234734 )79.252485
Staggered )79.238201 )79.257283
Barrier of rotation 2.87 3.70

Table 4. Results for the biphenyl system. Calculated total energies
(atomic units) are reported for planar, minimum and orthogonal
conformations. Standard SCF and ELMO rotational barriers are in
kilocalori/mole

Conformation ELMO SCF Experimental
[23]

Planar (h = 0°) )459.998980 )460.090703
Minimum (h = 44.4°) )460.006410 )460.095861
Orthogonal (h = 90°) )460.008138 )460.093215
Barrier of rotation

h = 0° 4.66 3.24 1.43
h = 90° 1.08 1.66 1.55

Fig. 2. Superimposed contour
plots of the extremely localised
molecular orbitals corresponding
to the r CAC and CAH bonds of
biphenyl (see text)
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that extremely localised MOs do not have any tails on
the regions adjacent to the localisation centres. This
feature is essential to the possibility to transfer MOs
from one molecule to another or in order to implement
rigorous bu�er regions in the QM/MM methodol.

Unfortunately, the deletion of the tails introduces a
nonorthogonality of the orbitals which results in math-
ematical and computational di�culties. In this paper we
have proposed an algorithm based on a generalisation of
the SCF-MI wavefunction [15, 16] which permits an
orthogonal formalism to be used while maintaining an
extreme localisation.

In order to test the implemented algorithm, geometry
optimisation of water and ammonia molecules was ac-
complished within the framework of extremely localised
MOs. Benzene and naphthalene molecules were also in-
vestigated to analyse di�erent localisation schemes and to
provide an example of the application to larger molecules.

The preliminary calculations reported for ethane and
biphenyl molecular systems are interesting. In particular
the recognition of rotational strain e�ects in biphenyl is
pivotal to the study of axial chirality in biaryls. Such
investigation would be of great signi®cance for the ra-
tionalisation of atropoisomerism and of the role of chiral
biaryl catalysts in asymmetric reactions [24].
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